BALANCE ENERGETICO: CONCEPTOS DE LA ENERGIA LIBRE DE GIBBS ΔG EN LA FERMENTACIÓN ALCOHÓLICA DEL MOSTO Y VINO
La fermentación alcohólica es un proceso anaeróbico exotérmico (libera energía) y moléculas de ATP necesarias para el funcionamiento metabólico de las levaduras (seres unicelulares).
Debido a las condiciones de ausencia de oxígeno durante el bioproceso, la respiración celular de la cadena del ADP en ATP queda completamente bloqueada, siendo la única fuente de energía para las levaduras la glicólisis de la glucosa con la formación de moléculas de ATP mediante la fosforilación a nivel de sustrato.
El balance a nivel molecular del proceso se puede decir que genera 2 moléculas de ATP por cada molécula de glucosa. Si se compara este balance con el de la respiración celular se verá que se generan 38 moléculas de ATP. A pesar de ello parece ser suficiente energía para los organismos anaeróbicos.
La energía libre de Gibbs (entalpía libre) de la reacción de fermentación etílica muestra un valor de ΔG de -234.6 kJ mol-1 (en un entorno de acidez neutra pH igual a 7) este valor negativo de la energía libre de Gibbs indica que: desde el punto de vista termodinámico la fermentación etílica es un proceso químico espontáneo
∆G o Energía libre de Gibbs:
- Es la cantidad de energía capaz de realizar un trabajo (ΔG).
- Las células heterótrofas (levadura) adquieren energía libre de las moléculas de nutrientes (azúcares en forma de glucosa y fructosa).
- Las células autótrofas (fotosintéticas) de la vid, lo tomaran de la radiación solar absorbida, durante el proceso de la fotosíntesis.
- Ambos tipos de células posteriormente transformarán esta energía libre en ATP, energía útil, energía capaz de realizar trabajo biológico.
- No toda la energía libre se transforma en ATP, la mayor parte de ella se transforma en calor.
Características que tiene ΔG:
- ΔG es la variación de energía libre de la reacción llevada a cabo en unas condiciones de temperatura y concentración de reactivos y productos determinadas.
- Por tanto una reacción química puede tener varios valores de ΔG dependiendo de las concentraciones de reactivos y productos y de la temperatura que se den durante la reacción.
- No debe confundirse por tanto con el valor ΔG°’, que es único para cada reacción, ya que se mide en las condiciones estándar bioquímicas (concentraciones de reactivos y productos 1.0 M, excepto de protones que es 10-7 M) y que verás sus valores en diferentes reacciones bioquímicas que estudiarás más adelante.
- Cada reacción tiene una variación de energía libre característica ΔGo´.
Valores que presenta ΔG:
- Si ΔG<0 .="" a.="" a="" aportar="" br="" consume="" contienen="" cumple="" de="" el="" enderg="" energ="" es="" especificaciones.="" espont="" estas="" evolucionar="" forma="" hacia="" irreversible.="" la="" libre="" los="" m="" n="" nea="" necesario="" nica="" nico.="" no="" para="" proceso="" producci="" produce="" producir="" productos="" produzca="" que="" reacci="" reactivos.="" s="" se="" ser="" si="" sistema="" sustratos.="" una="" y="">- ΔG=0. El proceso se encuentra en equilibrio y es incapaz de realizar trabajo.
Los procesos catabólicos, como la degradación oxidativa y fermentativa, son procesos exergónicos que liberan energía libre y poder reductor que se captan como ATP y NAD(P)H+, respectivamente.
Los procesos anabólicos son endergónicos y utilizan energía química almacenadas en forma de ATP y NAD(P)H+.0>
Enzima: Las enzimas son proteínas o asociaciones de proteínas y otras moléculas orgánicas (coenzimas) o inorgánicas (Cofactores) que actúan aumentando la velocidad de la reacción y disminuyendo la energía de activación que muchas reacciones precisan.
El NAD es una coenzima que forma parte de las enzimas hidrogenasas que intervienen en reacciones biológicas de oxido-reducción.
Es importante conocer lo que significa reducción y oxidación para comprender las reacciones que tienen lugar en las diferentes rutas metabólicas.
Reducción:
- Ganancia de hidrógeno.
- Pérdida de oxígeno.
- Ganancia de electrones.
Oxidación:
- Pérdida de hidrógeno.
- Ganancia de oxígeno.
- Pérdida de electrones.
LIMITACIONES DEL PROCESO
La determinación de los factores que limitan la glucólisis fermentativa del etanol son complejos debido a la interrelación existente y a la naturaleza de los parámetros intervinientes durante el proceso de fermentación. Algunos de ellos se deben tener en cuenta en la fermentación alcohólica industrial. En las limitaciones que surgen durante el proceso se pueden enumerar algunos de los más importantes como son:
- Concentración de etanol resultante: Una de las principales limitaciones del proceso, es la resistencia de las levaduras a las concentraciones de etanol (alcohol) que se llegan a producir durante la fermentación, algunos microorganismos como el saccharomyces cerevisiae pueden llegar a soportar hasta el 20% de concentración en volumen. En ingeniería bioquímica estos crecimientos se definen y se modelizan con las ecuaciones de crecimiento celular dadas por las ecuaciones de Tessier, Moser y de la ecuación de Monod.
- Acidez del substrato: El pH es un factor limitante en el proceso de la fermentación ya que las levaduras se encuentran afectadas claramente por el ambiente, bien sea alcalino o ácido. Por regla general el funcionamiento de las levaduras está en un rango que va aproximadamente desde 3.5 a 5.5 pH. Los procesos industriales procuran mantener los niveles óptimos de acidez durante la fermentación usualmente mediante el empleo de disoluciones tampón. Los ácidos de algunas frutas (ácido tartárico, málico) limitan a veces este proceso.
- Concentración de azúcares: La concentración excesiva de hidratos de carbono en forma de monosacáridos y disacáridos puede frenar la actividad bacteriana. De la misma forma la baja concentración puede frenar el proceso. Las concentraciones límite dependen del tipo de azúcar así como de la levadura responsable de la fermentación. Las concentraciones de azúcares afectan a los procesos de osmosis dentro de la membrana celular.
- Contacto con el aire: Una intervención de oxígeno (por mínima que sea) en el proceso lo detiene por completo (es el denominado Efecto Pasteur).28 Esta es la razón por la que los recipientes fermentadores se cierren herméticamente.
- La temperatura: El proceso de fermentación es exotérmico, y las levaduras tienen un régimen de funcionamiento en unos rangos de temperatura óptimos, se debe entender además que las levaduras son seres mesófilos. Si se expone cualquier levadura a una temperatura cercana o superior a 55 °C por un tiempo de 5 minutos se produce su muerte. La mayoría cumple su misión a temperaturas de 30 °C.
- Ritmo de crecimiento de las cepas: Durante la fermentación las cepas crecen en número debido a las condiciones favorables que se presentan en el medio, esto hace que se incremente la concentración de levaduras.
BIOQUÍMICA DE LA REACCIÓN
La glucólisis es la primera etapa de la fermentación, lo mismo que en la respiración celular, y al igual que ésta necesita de enzimas para su completo funcionamiento. A pesar de la complejidad de los procesos bioquímicos una forma esquemática de la reacción química de la fermentación alcohólica puede describirse como una glicólisis (en la denominada vía Embden-Meyerhof-Parnes) de tal forma que puede verse como participa inicialmente una molécula de hexosa:
C6H12O6 + 2 Pi + 2 ADP → 2 CH3-CH2OH + 2 CO2 + 2 ATP + 25.5 kcal
Se puede ver que la fermentación alcohólica es desde el punto de vista energético una reacción exotérmica, se libera una cierta cantidad de energía. La fermentación alcohólica produce gran cantidad de CO2, que es la que provoca que el cava (al igual que el Champagne y algunos vinos) tengan burbujas. Este CO2 (denominado en la edad media como gas vinorum) pesa más que el aire, y puede llegar a crear bolsas que desplazan el oxígeno de los recipientes donde se produce la fermentación. Por ello es necesario ventilar bien los espacios dedicados a tal fin. En las bodegas de vino, por ejemplo, se suele ir con una vela encendida y colocada a la altura de la cintura, para que en el caso de que la vela se apague, se pueda salir inmediatamente de la bodega. La liberación del dióxido de carbono es a veces "tumultuosa" y da la sensación de hervir, de ahí proviene el nombre de fermentación, palabra que en castellano tiene por etimología del latín fervere.
Un cálculo realizado sobre la reacción química muestra que el etanol resultante es casi un 51% del peso, los rendimientos obtenidos en la industria alcanzan el 7%. Se puede ver igualmente que la presencia de fósforo (en forma de fosfatos), es importante para la evolución del proceso de fermentación. La fermentación alcohólica se produce por regla general antes que la fermentación maloláctica, aunque existen procesos de fermentación específicos en los que ambas fermentaciones tienen lugar al mismo tiempo. La presencia de azúcares asimilables superiores a una concentración sobre los 0,16 g/L produce invariablemente la formación de alcohol etílico en proceso de crecimiento de levadura (Saccharomyces cerevisiae) incluso en presencia de exceso de oxígeno (aeróbico), este es el denominado efecto Crabtree, este efecto es tenido en cuenta a la hora de estudiar y tratar de modificar la producción de etanol durante la fermentación.
Si bien el proceso completo (vía Embden-Meyerhof-Parnes) descrito simplificado anteriormente explica los productos resultantes de la fermentación etílica de una hexosa, cabe destacar que el proceso se puede detallar en una glicólisis previa gobernada por un conjunto de enzimas en la que se obtiene 2 piruvato tal y como se describe a continuación:
C6H12O6 → 2 CH3COCOO− + 2 H2O + 2H+
La reacción química se describe como la reducción de dos moléculas de Nicotinamida adenina dinucleótido (NAD+) de NADH (forma reducida del NAD+) con un balance final de dos moléculas de ADP que finalmente por la reacción general mostrada anteriormente se convierten en ATP (adenosín trifosfato). Otros compuestos trazados en menores proporciones que se encuentran presentes tras la fermentación son: el ácido succínico, el glicerol, el ácido fumárico.
En más detalle durante la fermentación etílica en el interior de las levaduras, la vía de la glucólisis es idéntica a la producida en el eritrocito (con la excepción del piruvato que se convierte finalmente en etanol). En primer lugar el piruvato se descarboxila mediante la acción de la piruvato descarboxilasa para dar como producto final acetaldehído liberando por ello dióxido de carbono (CO2) a partir de iones del hidrógeno (H+) y electrones del NADH. Tras esta operación el NADH sintetizado en la reacción bioquímica catalizada por el GADHP se vuelve a oxidar por el alcohol deshidrogenasa, regenerando NAD+ para la continuación de la glucólisis y sintetizando al mismo tiempo etanol. Se debe considerar que el etanol va aumentando de concentración durante el proceso de fermentación y debido a que es un compuesto tóxico, cuando su concentración alcanza aproximadamente un 12% de volumen las levaduras tienden a morir. Esta es una de las razones fundamentales por las que las bebidas alcohólicas (no destiladas) no alcanzan valores superiores a los 20% de concentración de etanol.
LEVADURAS
Las levaduras son cuerpos unicelulares (generalmente de forma esférica) de un tamaño que ronda los 2 a 4 μm y que están presentes de forma natural en algunos productos como las frutas, cereales y verduras. Son lo que se denominan: organismos anaeróbicos facultativos, es decir que pueden desarrollar sus funciones biológicas sin oxígeno. Se puede decir que el 96% de la producción de etanol la llevan a cabo hongos microscópicos, diferentes especies de levaduras, entre las que se encuentran principalmente Saccharomyces cerevisiae, Kluyveromyces fragilis, Torulaspora y Zymomonas mobilis. Los microorganismos responsables de la fermentación son de tres tipos: bacterias, mohos y levaduras. Cada uno de estos microorganismos posee una característica propia sobre la fermentación que son capaces de provocar. En algunos casos son capaces de proporcionar un sabor característico al producto final (como en el caso de los vinos o cervezas). A veces estos microorganismos no actúan solos, sino que cooperan entre sí para la obtención del proceso global de fermentación. Las propias levaduras se han empleado a veces en la alimentación humana como un subproducto industrial. Se ha descubierto que en algunos casos es mejor inmovilizar (reducir el movimiento) de algunas levaduras para que pueda atacar enzimáticamente mejor y con mayor eficiencia sobre el substrato de hidratos de carbono evitando que los microorganismos se difundan facilitando su recuperación (los biocatalizadores suelen ser caros), para ello se emplean 'fijadores' como agar, alginato de calcio, astillas de madera de bálsamo, etcétera.
Algunas cepas de bacterias tienen eficiencias de fermentación altas sin necesidad de fijación, incluso a relativas velocidades de movilidad, tal y como puede ser el caso de Zymomonas mobilis (cuyo genoma completo se hizo público en el año 2005). Sin embargo, esta bacteria no se ha empleado industrialmente para la fermentación de la cerveza y de la sidra por proporcionar sabores y olores desagradables. No obstante posee una alta resistencia a sobrevivir a concentraciones elevadas de etanol, lo que la convierte en una bacteria ideal en la generación de etanol para usos no comestibles (como puede ser biocombustibles). El biólogo Lindner en el año 1928 fue el primero en describir la bacteria Zymomonas mobilis (conocida en honor de su descubridor como Z. lindneri, Thermobacterium mobile o Pseudomonas lindneri). Una de las características de esta bacteria es que emplea la vía Entner-Doudoroff para el metabolismo de la glucosa, en lugar de la más habitual vía de Embden-Meyerhoff-Parnas.
Cuando el medio es rico en azúcar (como puede ser el caso de las melazas o siropes), la transformación del mismo en alcohol hace que la presencia de una cierta concentración (generalmente expresada en grados brix) afecte a la supervivencia de levaduras no pudiendo realizar la fermentación en tal medio (las altas concentraciones de azúcar frenan los procesos osmóticos de las membranas de las células). Aunque hay distintos tipos de levaduras con diferentes tolerancias a las concentraciones de azúcares y de etanol, el límite suele estar en torno a los 14 o de alcohol para las levaduras del vino, por ejemplo. Los azúcares empleados en la fermentación suelen ser: dextrosa, maltosa, sacarosa y lactosa (azúcar de la leche). Los microorganismos 'atacan' específicamente a cada una de los hidratos de carbono, siendo la maltosa la más afectada por las levaduras. Otros factores como el número de levaduras (contadas en el laboratorio, o la industria, a veces mediante cámaras de Neubauer).
Algunas enzimas participan en la fermentación, como puede ser la diastasa o la invertasa. Aunque la única responsable de convertir los hidratos de carbono en etanol y dióxido de carbono es la zimasa. La zimasa es la responsable final de dirigir la reacción bioquímica que convierte la glucosa en etanol. La idea de que una sustancia albuminoide específica desarrollada en la célula de la levadura llega a producir la fermentación fue ya expuesta en el año 1858 por Moritz Traube como la teoría enzimática o fermentativa y, más tarde, ha sido defendida por Felix Hoppe-Seyler hasta llegar al descubrimiento de Eduard Buchner que llegó a hacer la fermentación sin la intervención de células y hongos de levadura.
CONSIDERACIONES GENERALES
La fermentación alcohólica se puede considerar (desde una perspectiva humana) como un proceso bioquímico para la obtención de etanol, que por otras vías se ha obtenido gracias a procedimientos químicos industriales, como por ejemplo mediante la reacción de oxidación de eteno. La finalidad de la fermentación etílica (desde una perspectiva microbiana) es la obtención de energía para la supervivencia de los organismos unicelulares anaeróbicos. Las bebidas alcohólicas se producen a partir de diferentes sustratos, dependiendo de la región geográfica y sus riquezas. Las materias primas pueden ser azúcares simples como los presentes en el jugo de uva, o de alto peso molecular, como el almidón de los granos de cebada. Existen dos tipos de bebidas alcohólicas, las que se obtienen directamente por fermentación de los diferentes sustratos y las destiladas, producidas por destilación del producto de fermentación. El proceso principal por el cual se transforma el mosto en vino es la fermentación alcohólica, la cual consiste en la transformación de azúcares en alcohol etílico y anhídrido carbónico. La fermentación alcohólica es la base de la vinificación, sin embargo, su importancia no radica únicamente en la obtención de etanol a partir de los azúcares, sino que además durante el proceso fermentativo se van a formar una gran cantidad de productos secundarios que influyen en la calidad y tipicidad del vino.